Sn=(n^2+3n+4)/2 若f(n)关于n的多项式,且满足lim(Sn/an-f(n))=2求f(n)的表达式
人气:103 ℃ 时间:2020-06-22 09:08:53
解答
An=Sn-S[n-1]=n+1 (n>=2)
A1=S1=4
所以An分段.
由题意可知f(n)=an+b
Sn/An-f(n)=(n^2+3n+4)/(2n+2)-an-b
=[(1-2a)n+3-2(a+b)+(4-2b)/n]/[2(1+1/n)]
则联立方程组
1-2a=0,3-2(a+b)=4
a=1/2,b=-1
f(n)=n/2-1
推荐
- 在数列{an}中,它的前n项和Sn=a1+a2+.+an=n2/3n+2, 则lim an等于?
- 在数列an中,其前N项和Sn=1/3n(n+1)(n+2).记Tn为数列(1/an)的前N项和.求lim(n→∞)Tn
- 等差数列an,bn的前n项和分别为Sn,若Sn/Tn=2n/(3n+1),求lim an/bn
- {an}{bn}等差,前n项和的比为Sn/Tn=(2n+1)/(3n-2),求lim an/bn
- 等差数列{an},{bn}的前n项和分别为Sn和Tn,若SnTn=2n/3n+1,则limn→∞anbn=_.
- 做一个长方体形状的鱼缸,长8分米,宽3分米,需要玻璃多少平方分米?
- Every boring hour in life is unique
- 英语翻译
猜你喜欢