微积分:f(x)是周期为T的连续函数,证明:
x趋于无穷时,[1/x乘f(t)在(0,x)上的积分]的极限 等于 1/T乘f(t)在(0,T)上的积分
人气:483 ℃ 时间:2019-10-19 18:07:41
解答
我的解答里面以“(”开头的段落都是我对某一步骤或者解题思路的讲解,我觉得可以帮你了解这种题目的做法,所以写上了,如果不需要可以不用看, 因为f周期,所以f在(NT,(N+1)T)上积分对每个整数N来说都是一样的,设...
推荐
- 设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx
- 证明:若f(x)是以T为周期的连续函数,则f(x)在a到a+T上的定积分的值与a无关
- 证明,若函数f(x)是以T为周期的周期函数,则函数F(x)=f(ax),(a>0)是以T/a为周期的周期函数.
- 以T为周期的连续函数f(x)证明:∫(a+T,a)f(x)dx=∫(T,0)f(x)dx,
- 请证明一下‘若f(x)满足 f(x+T) = - f(x),则f(x)是周期为2T的周期函数.’
- a+b+c=1,a、b、c∈R+,证明:[1/(1-a)]+[1/(1-b)]+[1/(1-c)]≥[2/(1+a)]+[2/(1+b)]+[2/(1+c)]
- 英语翻译
- 在1、2、3、9、24、41和51中,奇数是(),偶数是(),质数是(),合数是(),()是奇数但不是质数,()是偶数但不是合数.
猜你喜欢