以T为周期的连续函数f(x)证明:∫(a+T,a)f(x)dx=∫(T,0)f(x)dx,
我的证明方法是令x=t+a,当x=a时t=0,当x=a+T时,t=T,dx=dt,则
原式可化为
∫(T,0)f(t+a)dt=∫(T,0)f(x+a)dx,,这是怎么回事,要证的没证出来,反而得了一个这样的式子,这个式子正确吗,我的步骤都写对了啊,怎么会不正确呢,求解释这个式子,到底正不正确.
人气:214 ℃ 时间:2019-09-24 18:28:01
解答
这个式子是对的,由于f(x)是以T为周期,因此在一个周期内函数所围的曲边梯形面积肯定是相同的所以你得出这个结论并不奇怪,只是这样可能证不出结论.
本题如果用换元法,应该这样证明
∫[a→a+T] f(x)dx
=∫[a→0] f(x)dx + ∫[0→T] f(x)dx + ∫[T→a+T] f(x)dx
然后通过换元证明第一项和第三项正好抵消.
下面提供一个更简单的证法:
将a看作变量,令g(a)=∫[a→a+T] f(x)dx
则:g'(a)=f(a+T)-f(a)=0,因此g(a)与a无关,则g(a)=g(0)
即∫(a→a+T)f(x)dx=∫(0→T)f(x)dx
【数学之美】团队为你解答.
推荐
- 设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx
- 谁能给我讲讲这道题啊?设f(x)是连续的周期函数,周期为T,证明:∫(a~a+T)f(x)dx=∫(0~T)f(x)dx;
- 设函数f(x)在区间[0,1]上连续,证明∫[∫f(t)dt]dx=∫(1-x)f(x)dx
- 设f(x)是连续的周期函数,周期为T,证明:∫(a~a+T)f(x)dx=∫(0~T)f(x)dx
- 设f(x)是以T为周期的连续函数,证明:∫(a为下限,a+T为上限)f(x)dx=∫f(x)dx (上限是T,下限是0)
- 请以“我的家乡”为题写一篇作文,500字左右.
- 是13世纪元朝的时候吗?拉丁字母、阿拉伯数字是什么时间从欧洲传入中国的?请问,拉丁字母、阿拉伯数字是什么时候传入中国的?
- 工人在规定的时间内生产零件如每小时加工8个可超产2个如每小时加工12个可提前1小时完成求加工零件数和时间
猜你喜欢
- 已知一个直角三角形纸片OAB,其中∠AOB=90,OA=2,OB=4,如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB交于点C,与边AB交于点D.
- 《爱的教育》 形式
- i want tu runaway with you and never look back 什么意思?
- 汽车每小时比自行车多行75千米,如果汽车每小时的路程是自行车的6倍,那么汽车每小时行多少千米.
- △ABC的三边长分别为3、4、5,P为平面ABC外一点,它到其三边的距离都等于2,且P在平面ABC上的射影O位于△ABC的内部,则PO等于( ) A.1 B.2 C.32 D.3
- 英语翻译
- 英语翻译
- 地球的半径为R,地球表面处物体所受重力为mg