> 数学 >
已知:在三角形中,2(sinA)^2=3(sinB)^2+3(sinC)^2,cos2A+3cosA+3cos(B-C)=1,
,求三角形ABC的三边之比?
(根号3):1:1
人气:290 ℃ 时间:2020-04-02 00:57:35
解答
cos2A = 1-2(sinA)^2= 1 - 3(sinB)^2 - 3(sinC)^2cosA = cos(pi-B-C)= -cos(B+C)代入式“cos2A+3cosA+3cos(B-C)=1”中,得:1 - 3(sinB)^2 - 3(sinC)^2 - 3cos(B+C) + 3cos(B-C) = 1整理,得:(sinB)^2 + (sinC)^2 + ...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版