>
数学
>
同时具有性质:“①最小正周期为π;②图象关于直线x=
π
3
对称;③在(-
π
6
,
π
3
)上是增函数.”的一个函数是( )
A. y=sin(
x
2
+
π
6
)
B. y=cos(
x
2
−
π
6
)
C. y=cos(2x+
π
3
)
D. y=sin(2x-
π
6
)
人气:181 ℃ 时间:2020-02-15 05:43:19
解答
∵函数的最小正周期为π,
∴
2π
ω
=π,得ω=2,答案应该在C、D中选,排除A、B两项
∵在(-
π
6
,
π
3
)上是增函数
∴当x=-
π
6
时,函数有最小值,当x=
π
3
时,函数有最大值.
对于C,f(-
π
6
)=cos(-
π
3
+
π
3
)=1为最大值,不符合题意;
而对于D,恰好f(-
π
6
)=sin(-
π
2
)=-1为最小值,f(
π
3
)=sin
π
2
=1为最大值.
而x=
π
3
时,y=sin(2x-
π
6
)有最大值,故象关于直线x=
π
3
对称,②也成立.
故选D
推荐
给定性质:①最小正周期为π;②图象关于直线x=π3对称.则下列四个函数中,同时具有性质①②的是( ) A.y=sin(x2+π6) B.y=sin(2x+π6) C.y=sin|x| D.y=sin(2x-π6)
同时具有性质:“①最小正周期为π;②图象关于直线x=π3对称;③在(-π6,π3)上是增函数.”的一个函数是( ) A.y=sin(x2+π6) B.y=cos(x2−π6) C.y=cos(2x+π3) D.y=sin(2x-π6)
同时具有性质:“①最小正周期为π;②图象关于直线x=π3对称;③在(-π6,π3)上是增函数.”的一个函数是( ) A.y=sin(x2+π6) B.y=cos(x2−π6) C.y=cos(2x+π3) D.y=sin(2x-π6)
f(x+a)=-f(x)如何证明这个函数有对称或者周期什么的性质?
给出四个函数,则同时具有以下两个性质:①最小正周期是π;②图象关于点(π6,0)对称的函数是( ) A.y=cos(2x-π6) B.y=sin(2x+π6) C.y=sin(x2+π6) D.y=tan(x+π3)
2010年4月青海玉树地震后,希望小学五年级捐款钱数与六年级捐款钱数比是9:8,已知六年级捐款钱数是2720元
平面上有六条两两不平行的直线,试证:在所有的交角中至少有一个小于31度
38岁37岁35岁的英文单词要怎么写?
猜你喜欢
52张扑克牌中有黑桃、红桃、方块、梅花4钟花色各13张.为什么要取出40张牌,才能保证有4种花色牌
铝焊条要用什么焊机来焊接?
如何分别句子的主谓宾
用一根长48厘米的铁丝做成一个长方形框架(接头处不计).已知长、宽、高的比是3:2:1,这个长方形最大的
don't 【 translate 】 every sentence 【into】 chinese ,please
如图,已知Rt△ABC中,AB=AC,D是斜边BC的中点,将直角三角尺的直角顶点置于点D,两直角边分别与AB,AC交于点E,F.求证:DE=DF.
street中tr为什么音标不是发tr而是dr啊?好多都这样,
估算下列各数的大小.【1】根号45【误差小于0.1】.【2】三次根号2250【误差小于
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版