设A为n阶矩阵,x为n维向量,则
A^TAx=0的解必是AX=0的解?
若AX=0有解时A^TAX=0也有解,则A必可逆?
人气:230 ℃ 时间:2020-06-07 11:01:51
解答
1.A是实矩阵时正确
x 满足 A^TAx=0,则 x^TA^TAx=0,即有 (Ax)^T(Ax)=0,故有 Ax=0
2.不对.
不管A是否可逆,Ax=0时,(等式两边左乘A^T) 都有 A^TAx=0.
推荐
- A是n阶矩阵,α1,α2……αn是n维列向量,αn≠0,Aα1=α2,……,Aαn-1=αn,Aα
- 设A为n阶实矩阵,证明A是正交矩阵当且仅当对任意的n维向量α,β有(Aα,Aβ)=(α,β)
- 设α使n维列向量,A是n阶正交矩阵,则
- 设A为n阶可逆矩阵,α1,α2,…αn为 n个线性无关的n维列向量.
猜你喜欢