高数定积分题一枚,证明,当x→∞时,∫[0,x]e∧(x∧2)dx~1/(2x)e∧(x∧2).
人气:288 ℃ 时间:2020-03-31 04:56:23
解答
∫e^(x^2)dx=(1/2)∫e^x^2dx^2/x
=(1/2)∫d(e^x^2)/x
=(1/2)e^(x^2)/x -(1/4)e^(x^2)/x^3+...+(-1)^(n-1)/(2^n)e^x^2/x^(2n-1)
x→∞,∫[0,x]e^x^2dx ≈(1/2)e^(x^2)/x
推荐
- 高数定积分题一枚,证明,当x→∞时,∫[0,x]e∧(x∧2)dx~1/(2x)e∧(x∧2).
- 高数定积分,设f(x)=lnx-∫1→e f(x)dx,证明:∫1→e f(x)dx=1/e
- 请解释高数定积分证明1、若f(x)在〔-a,a〕上连续且为偶函数,则 ∫(上a下-a)f(x)dx=2∫(上a下0)f(x)dx
- 高数定积分设f(x)=1/(1+x),x≥0 f(x)=1/(1+e^x),x≤0 求积分f(x-1)dx 上限2 下限0
- 高数题目定积分:上限1下限0 1/(x^2+x+1)dx
- 一篇400字美文+赏析
- 写一段表示老师高兴的句子
- mr green said he ( )in the school for about twenty years
猜你喜欢