则命题p和q都是假命题
命题p: 方程a^2x^2+ax-2=0在-1到1上有解
解有:a^2x^2+ax-2=0
(ax+2)(ax-1)=0
解得:x=-2/a 或 x=1/a
要满足在-1到1上有解则有要满足-2/a和1/a至少有一个值在-1到1之间
则有:①-1<=-2/a<=1 ,② -1<=1/a<=1(注:a为分母,所以不能为0)
①\x09解得:当a>0时,a>=2
当a <0时,a<=-2
②\x09解得:当a>0时,a>=1
当a <0时,a<=-1
综上所述:a的范围是(-∞,-1】∪【1,+ ∞)
即在上述范围内命题p是真命题,
反之,要满足题意使之为假命题,a的取值范围为1命题q:只有一个实数x满足不等式x^2+2ax+2a<=0
解有:x^2+2ax+2a<=0
x^2+2ax+a^2-a^2+2a<=0
(x+a) ^2-(a^2-2a+1)+1<=0
(x+a) ^2<=(a-1) ^2-1
因为任何数的平方一定大于等于0,所以(x+a) ^2一定是大于等于0的
要使其x的值只有一个,则有(x+a) ^2=0满足题意,
可知:当(a-1) ^2-1=0时,命题q为真命题,解得:a=0或a=2
即,要使命题q为假命题,a满足不为0和2,
综合可得:1
推荐
- 已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,则a的取值范围是_.
- 已知命题p:方程a2x2+ax=0在[-1,1]上有解,命题q:只有一个实数x满足不等式x2+2ax+2a
- P:方程a方x方+ax-a=0在[-1,1]上有解,q:只有一个实数x满足不等式x方+2ax+2a
- 已知命题p:方程x^2-(3+a)x+3a=0在【-2,2】上有且仅有一解,命题q:只有一个实数x满足不等式x^2-2ax+3a小于等于0,若命题“p或q”是假命题,求实数a的取值范围
- 已知命题p:方程a2x2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0.若命题“p或q”是假命题,则a的取值范围是_.
- 请求高人帮我写一篇英语作文
- As she ____the newspaper,Granny _____ asleep
- ①要配置一种浓度为20%的糖水,12克糖需要加水( )克;180克的水需要加糖 ( )克
猜你喜欢