> 数学 >
cos (α+β)=4/5,cos (α-β)= -4/5,α+β在第四区间,α-β在第二区间,求cos2α和cos2β的值.
人气:227 ℃ 时间:2020-04-11 17:08:46
解答
是象限,不是区间.
解析:∵cos (α+β)=4/5,cos (α-β)= -4/5,α+β在第四象限,α-β在第二象限,不妨设一个周期内【0,2π】,
即,3π/2<α+β<2π,π/2<α-β<π,
∴2π<2α<3π,π/2<2β<3/2π,
∴2a在一,二象限;2β在二,三象限,
则sin(α+β)=-3/5,sin(α-β)= 3/5,
cos(2α)=cos[((α+β)+(α-β)]
=cos(α+β)cos(α-β)-sin(α+β)sin(α-β)
=4/5*(-4/5)-(-3/5)*3/5
=-7/25
cos(2β)=cos[((α+β)-(α-β)]
=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)
=4/5*(-4/5)+(-3/5)*3/5
=-1
因为楼上没分析角度,所以我又做了下,帮你完整理解题目.实质很多题目必须分析角范围和函数才能决定其值.
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版