设f(x)连续,且满足f(x)=e^x+∫x上0下(t-x)f(t)dt 求f(x)
人气:359 ℃ 时间:2019-10-23 08:35:13
解答
∵f(x)=e^x+∫(t-x)f(t)dt
∴f'(x)=e^x-∫f(t)dt
f''(x)=e^x-f(x)
f(0)=f'(0)=1
故 解此微分方程得 f(x)=C1e^x+C2e^(-x)+(x/2)e^x (C1,C2是积分常数).
推荐
- 设f(x)连续,且满足f(x)=e^x+∫(0,x)tf(x-t)dt,求f(x)
- 设f(X)连续且满足 f(x)=e^x+sinx- ∫ x 0 (x-t)f(t)dt,并求该函数f(x)
- ∫(0,x)f(t-x)dt=e^(-x²)+1 求f(x)
- 设f(x)为连续函数,且符合关系f(x)=e^x-∫(0,x)(x-t)f(t)dt,求函数f(x)
- 设连续函数f(x)满足f(x)+2∫(x上0下)f(e)dt=x的平方 ,求f(x)
- 4.Some people transmit HIV by receiving infected blood transfusions or,_____,through birth.
- Thais to make better use of all the time they spend in traffic.是什么从句?
- UTC+1
猜你喜欢