> 数学 >
三角函数证明(sinα+sinθ)*(sinα-sinθ)=sin(α+θ)*sin(α-θ)
求证(sinα+sinθ)*(sinα-sinθ)=sin(α+θ)*sin(α-θ)
人气:196 ℃ 时间:2020-06-10 02:38:47
解答
证明:
(sinα+sinθ)(sinα-sinθ)
=sin²α-sin²θ
=[(1-cos2α)-(1-cos2θ)]/2
=(cos2θ-cos2α)/2
={cos[(α+θ)-(α-θ)]-cos[(α+θ)+(α-θ)]}/2
={[cos(α+θ)cos(α-θ)+sin(α+θ)sin(α-θ)]-[cos(α+θ)cos(α-θ)-sin(α+θ)sin(α-θ)]}/2
=[2sin(α+θ)sin(α-θ)]/2
=sin(α+θ)sin(α-θ)
证毕
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版