| 2 |
| 3 |
| 2n+1 |
| 3 |
∵bn=(-1)n-1anan+1,
∴当n为偶数时,Sn=b1+b2+…+bn
=a1a2-a2a3+a3a4-a4a5+…+an-1an-anan+1
=a2(a1-a3)+a4(a3-a5)+…+an(an-1-an+1)
=(a2+a4+…+an)(-2d)
=−
| 4 |
| 3 |
| (a2+an) |
| 2 |
| n |
| 2 |
| 4 |
| 3 |
(
| ||||
| 2 |
| n |
| 2 |
=
| −2n(n+3) |
| 9 |
当n为奇数时,Sn=Sn-1+bn=
| −2(n−1)(n−1+3) |
| 9 |
=
| 2n2+6n+7 |
| 9 |
∴Sn=
|
| 2 |
| 3 |
| 2 |
| 3 |
| 2n+1 |
| 3 |
| 4 |
| 3 |
| (a2+an) |
| 2 |
| n |
| 2 |
| 4 |
| 3 |
(
| ||||
| 2 |
| n |
| 2 |
| −2n(n+3) |
| 9 |
| −2(n−1)(n−1+3) |
| 9 |
| 2n2+6n+7 |
| 9 |
|