> 数学 >
关于x的一元二次方程kx^2+(k+2)x+k/4=0,有两个不相等的实数根
是否存在实数k,使方程的两个实数根的倒数和等于0?
人气:319 ℃ 时间:2019-09-29 01:28:56
解答
不存在.因为方程有不等的实根,所以(k+2)^2-4*k*k/4>0,即k>-1
要使两个实数根x1,x2倒数和为0,即1/x1+1/x2=0,解得x1+x2=0,因为x1+x2=(-k-2)/k=0
所以k=-2,与前面的k>-1矛盾,所以不存在
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版