设A是n阶对称正定矩阵,求证:存在唯一的正定阵B使A=B*B
人气:483 ℃ 时间:2019-11-04 12:04:53
解答
正交对角化:存在正交阵Q和对角阵,使得
Q'BQ=D,Q'AQ=D^2=diag{e1,e2,..,en},e1,...,en是A的特征值
因为B也是正定,所以D=diag{sqrt(e1),...,sqrt(en)}唯一确定,那么B也唯一确定B=QDQ'
推荐
- 证明若A是n阶正定矩阵,则存在 n阶正定矩阵B,使得A=B^2
- 设A、B均为N阶实对称正定矩阵,证明:如果A—B正定,则B的逆阵减去A的逆阵正定.
- 求证A是n阶正定矩阵,则存在 唯一的正定矩阵B,使A=B^2 我会存在性,这里求证唯一性
- 证明若A是n阶正定矩阵,则存在n阶正定矩阵B,使A=B^2
- 设A,B分别是n,m阶实对称矩阵,且B是正定矩阵.证明,存在m*n非零矩阵H,使B-HAH'成为正定矩阵.
- 作文 传统于现代
- 在一个停车场里停车一次至少要交费2元.如果停车超过1小时.每多停0.5小时要多交1.5元.这辆汽车在离开停车场
- 在等差数列-5,-7/2,-2,-1/2,...的每相邻两项插入一个数,使之成为一个新的等差数列,则新的数列的通项
猜你喜欢