已知函数f x =x^2-alnx在区间(1.2】内是增函数,g(x)=x-a根x在区间(0,1)内是减函数
1·求f(x) g(x)的表达式 2·求证:当x大于0时,方程f(x)-g(x)=x^2-2x+3有唯一的解
人气:318 ℃ 时间:2019-08-19 20:56:55
解答
f'(x)=2x-a/x=(2x^2-a)/x
因为在(1,2],2x^2-a是单调增的,
所以要保证在此区间f'(x)>=0,须有f(1)=2-a>=0,即a0时的最小值.
故h(x)只有一个零点.
所以原方程只有一个根为x=1
推荐
- 已知函数f[x]=x²减[2a+1]x+alnx 当a=1时函数f[x]的单调增区间 求函数f[x]在区间[1,e]上的最小值
- 已知函数f(x)=x^2-(a+2)x+alnx(a∈R),求函数f(x)单调区间
- 已知f(x)=x^2-alnx在(0,1)上为减函数,g(x)=x-a根号x在{1.2}(闭区间)上是增函数,求函数f(x)和g(x)
- 已知函数f(x)=1/2x^2+alnx(a∈R,a≠0),求f(x)的单调区间
- 已知函数f(x)=x^2-alnx在(1,2]是增函数,g(x)=x-a『x在(0,1)为减函数
- 在△ABC中,a=5,b=4,cos(A-B)=31/32,求cosC.
- workforce怎么造句?
- 某商店在一次买卖中,同时卖出两件上衣,每件上衣以600元出售,若按成本计算,其中一件赢利20%,另一件亏
猜你喜欢