设函数f(x)可导,且满足f(x)=1+2x+∫(上限x下限0)tf(t)dt-x∫(上限x下限0)f(t)dt,试求函数f(x).
人气:386 ℃ 时间:2019-10-09 12:22:47
解答
答:f(x) = 2sinx + cosx
f(x) = 1 + 2x + ∫(0~x) tf(t) dt - x∫(0~x) f(t) dt ...(1)
f'(x) = 2 + xf(x) - [∫(0~x) f(t) dt + xf(x)]
f'(x) = 2 - ∫(0~x) f(t) dt
f''(x) = -f(x)
f''(x) + f(x) = 0 ...(2)
特征方程:r² + 1 = 0 => r = ±i
f(x) = Asinx + Bcosx,A、B为任意常数
由(1):f(0) = 1
=> f(0) = Asin(0) + Bcos(0) = B
=> B = 1
f(x) = Asinx + cosx,代入(1):
Asinx + cosx = 1 + 2x + ∫(0~x) (t - x)(Asint + cost) dt
Asinx + cosx = 1 + 2x + Asinx + cosx - Ax - 1
=> A = 2
所以f(x) = 2sinx + cosx
推荐
- 设函数f[x]可导,且满足f[x]=1+2x+§tf[t]dt上限x下限0-x§f[t]dt上限x下
- 设f(x)为可导函数,且满足∫(上限为x下限为0)tf(t)dt=x^2+f(x),求f(x)
- 已知连续函数f(x)=∫(上限是3x,下限是0)f(t/3)dt+e^2x,求f(x).
- 设函数f(x)满足上限(x)下限(0)(x-t)f(t)dt=2x+上限(x)下限(0)f(t)dt求f(x)
- 设f(x)=x+2∫f(t)dt,积分上限是1,下限是0 其中f(x)为连续函数,求f(x)
- 空气压力是水的几倍
- 这句英语对吗With the tremendous success of the opening ceremony of the Beijing Olympic Games,
- 英语翻译:在那一时期,中国没有电视(用time;when)
猜你喜欢