设函数f(x)满足上限(x)下限(0)(x-t)f(t)dt=2x+上限(x)下限(0)f(t)dt求f(x)
人气:288 ℃ 时间:2019-09-21 05:39:21
解答
∫(0,x) (x-t)f(t)dt=2x +∫(0,x) f(t)dt
左边展开
x∫(0,x)f(t)dt-∫(0,x) tf(t)dt=2x +∫(0,x) f(t)dt
两边对x求导:
∫(0,x)f(t)dt+xf(x)-xf(x)=2+f(x)
所以
∫(0,x)f(t)dt=f(x)+2 (*)
在对x求导
f(x)=f'(x)
所以f(x)=c*e^x
代入(*)中
得到c=-2
所以f(x)=-2e^x
推荐
- 设函数f(x)可导,且满足f(x)=1+2x+∫(上限x下限0)tf(t)dt-x∫(上限x下限0)f(t)dt,试求函数f(x).
- 已知连续函数f(x)=∫(上限是3x,下限是0)f(t/3)dt+e^2x,求f(x).
- 设函数f[x]可导,且满足f[x]=1+2x+§tf[t]dt上限x下限0-x§f[t]dt上限x下
- 设f(x)=x+2∫f(t)dt,积分上限是1,下限是0 其中f(x)为连续函数,求f(x)
- 设f(x)为可导函数,且满足∫(上限为x下限为0)tf(t)dt=x^2+f(x),求f(x)
- 一件羽绒服按八五折出售的价格是340元,咋这件羽绒服的原价是多少元
- 按自然数从小到大为标准次序,求 1 3…(2n-1) (2n) (2n-2)…2的逆序数.
- 蛋糕房制一种蛋糕,每个需要0.32千克面粉.王师傅领了5千克面粉做蛋糕,他最多可以做几个生日蛋糕?
猜你喜欢
- 一块长方形的草地的长和宽分别为20米和15米,在它四周外围环绕着宽度相等的小路.已知小路的面积为246平方米,求小路的宽度.
- 电能表
- 中秋节来源 50字
- 1.在玻璃管中放入铁和氧化铁的混合物6.00g,通入足量的纯净一氧化碳并加强热,当氧化铁全部被还原为铁时,最终得到固体残留物5.04g.计算:原混合物中铁单质的质量分数.
- 一个修路队8天修了一条路的3/8,正好是240米,要修的路有多长
- 向饱和NaCl溶液中加入少量KCl固体
- 如图,平行四边形ABCD,E为AD的中点,AC、BE相交于点F,S△EFC=1,则S平行四边形ABCD=
- 用迈组词