我国汉代数学家赵爽为了证明勾股定理 创制了一幅弦图,直角三角形的面积为3
我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”.图1由弦图变化得到,它是由八个全等的直角三角形拼接而成.直角三角形的面积为3,小正方形MNKT的面积为4,则直角三角形的斜边长——
人气:279 ℃ 时间:2019-10-18 11:33:03
解答
结果是4
设直角边长为a,b,斜边长为c
小正方形面积 = (a - b)^2 = 4.^表示乘方
小正方形和周围4个三角形组成一个正方形.面积等于c^2
c^2 = (a-b)^2 + 2ab = 4 + 3 X 4 = 16
c = 4
推荐
- 我国汉代数学家赵爽为了证明勾股定理,创制了一幅,“弦图”,后人称其为,“赵爽弦图”,如图一,图二由弦图变化得到,它是由八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT,面积分别为S1,S2,S3,若S1+S
- 我国汉代数学家赵爽为了证明勾股定理创制了一副“弦图”,后人称其为“赵爽弦图”(如图1)
- 我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1),图2由弦图变化得到,它是由作个全等的直角三角形拼接而成,记图中正方形ABCD,正方形E
- 我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1),图2由弦图变化得到,它是由作个全等的直角三角形拼接而成,记图中正方形ABCD,正方形E
- 我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称其为“赵爽弦图”(如图1).图2由弦图变化得到,它由四个全等的直角三角形拼接而成.点E,F,G,H分别是AF,BG,CH
- 从带龙的成语开始(无论“龙”字在第几个字),成语首尾字接龙,用最少的成语接到“竹报平安”.
- 为什么长江流域以南除珠江三角洲外没有商品粮基地都是分布?
- 某金属氧化物的组成为MO,如果在其氯化物中金属的化合价与该氧化物中的化合价相等,则该金属氯化物的组成为( ) A.MCl B.MCl2 C.M2Cl D.M2Cl2
猜你喜欢