若AB为过椭圆x2/25+y2/16=1中心的弦,F1为椭圆的焦点,则三角形F1AB的面积最大值
方法2(基本方法):S△F1AB=S△OAF1+S△OBF1=(c×丨y1-y2丨)÷2=(3×丨y1-y2丨)÷2然后
情况(1):当K存在时,设AB:y=kx代入椭圆x2/25+y2/16求出丨y1-y2丨得60× √丨K平方丨 × √[25×K平方×16] ÷ (25×K平方×16) <12
情况(2):K不存在时S=b×2c ÷2=12
综合情况(1)(2)得S≤12
我得的式子是60× √丨K平方丨 × √[25×K平方+16] ÷ (25×K平方+16) 之后就得15了.不太明白上面的,
人气:173 ℃ 时间:2019-08-20 21:39:26
解答
是60√(k²)·√(25K²+16) / (25K²+16)吗?
y=kx,x=y/k,k≠0
x²/16 + y²/25=1
25x²+16y²=400
25(y/k)² + 16y²=400
25y²+16k²y²=400k²
(25+16k²)y²=400k²
y=±√[400k²/(25+16k²)]
|y1-y2|=2√[400k²/(25+16k²)]
=40√[k²/(25+16k²)]
S=(3/2)|y1-y2|
=60√[k²/(25+16k²)]
=60/√[25 + (16/k²)]
25 + 16/k²>25
√(25 + 16/k²) >5
60/√(25 + 16/k²) <12
当k=0时,面积为0.
推荐
- 若AB过椭圆 x225+y216=1中心的弦,F1为椭圆的焦点,则△F1AB面积的最大值为( ) A.6 B.12 C.24 D.48
- F1,F2是椭圆x^2/2+y^2=1的两个焦点,过F2作倾斜角为45度的弦AB,则三角形F1AB的面积为多少?
- F1,F2是椭圆x的平方/2+y的平方=1的两个焦点,过F2作倾斜角为派/4的弦AB,则△F1AB的面积为
- 设椭圆X²/9+Y²/25=1的两个焦点为F1,F2,若AB是经过椭圆中心的一条弦,求△F1AB面积的最大值.
- AB为过椭圆x2/a+y2/b2=1的中心的弦,F1(c,0)为椭圆的焦点,则三角形F1AB的面积最大值
- In the end ,I found the answer _ the difficult question.A.to B.of C.about
- 求part of your world的歌词加翻译
- 一本书,已经看了总页数的60%,没有看的与全书的比是( ) A.2:3 B.3:5 C.2:5 D.1:3
猜你喜欢