> 其他 >
如图,在边长a的菱形ABCD中,∠DAB=60°,E是AD边上异于A,D两点的动点,F是CD边上的动点,且满足AE+CF=a.
试探索:不论E、F怎样移动,△BEF总是怎样的三角形?并证明你的猜想
人气:125 ℃ 时间:2020-01-31 02:22:26
解答
猜想:△BEF是等边三角形
证明:连接BD
∵四边形ABCD是菱形
∴BD平分∠ADC
∵∠DAB=60°
∴∠ADC=120°,∠EDB=120°/2=60°
∵AE+CF=a
又∵AE+ED=a
∴CF=ED
同理,AE=DF
∵AD=AB,∠DAB=60°
∴△ABD是等边三角形
∴AB=BD
∴△ABE≌△DBF
∴EB=FB,∠ABE=∠DBF
∴∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°
∴△EBF是等边三角形
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版