如图,在边长a的菱形ABCD中,∠DAB=60°,E是AD边上异于A,D两点的动点,F是CD边上的动点,且满足AE+CF=a.
试探索:不论E、F怎样移动,△BEF总是怎样的三角形?并证明你的猜想
人气:125 ℃ 时间:2020-01-31 02:22:26
解答
猜想:△BEF是等边三角形
证明:连接BD
∵四边形ABCD是菱形
∴BD平分∠ADC
∵∠DAB=60°
∴∠ADC=120°,∠EDB=120°/2=60°
∵AE+CF=a
又∵AE+ED=a
∴CF=ED
同理,AE=DF
∵AD=AB,∠DAB=60°
∴△ABD是等边三角形
∴AB=BD
∴△ABE≌△DBF
∴EB=FB,∠ABE=∠DBF
∴∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°
∴△EBF是等边三角形
推荐
- 在边长为a的菱形ABCD中,角DAB等于60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a.
- 在边长为a的菱形ABCD中,∠DAB=60°,E是AD上异于A,D两点的动点,F是CD上的动点,满足AE+CF=a
- 如图,边长为4的菱形ABCD中,∠DAB=60°,E是AD上的动点(与A,D不重合),F是CD上的动点,且AE+CF=4. (1)求证:不论点E,F的位置如何变化,△BEF是正三角形; (2)设AE=x,△BEF的面积是S,
- 如图,在边长为a的菱形ABCD中,角DAB=60°,E是AD上的动点,F是CD上的动点,满足AE+CF=a,说明;不论E,F怎么移动,三角形BEF总是正三角形.
- 如图,在边长a的菱形ABCD中,∠DAB=60°,E是AD边上位于A,D两点的动点,F是CD边上的动点,且满足AE+AD=a,
- Likes a person is really very easy,I ask myself,I like her semblance?May have the friend said nearby own ear that she di
- among和 in the middle of 区别
- 好文章是滋味甘醇的美酒,让人回味无穷;好文章是········
猜你喜欢