已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
人气:178 ℃ 时间:2019-12-06 11:37:09
解答
根据题意,由f(3)=1,
得f(9)=f(3)+f(3)=2.
又f(x)+f(x-8)=f[x(x-8)],
故f[x(x-8)]≤f(9).
∵f(x)在定义域(0,+∞)上为增函数,
∴
解得8<x≤9.
∴原不等式的解集为{x|8<x≤9}.
推荐
- 已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
- 已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.
- 已知函数f(x)的定义域是(0,+∞),当x>1时,f(x)>0,且满足f(xy)=f(x)+f(y),如果f(1/3)=-1,求满足不等式f(x)-f(1/(x-2))≥2的取值范围
- 已知f(x)的定义域为(0,+∞),且在其定义域内为增函数,满足f(xy)=f(x)+f(y),f(2)=1,试解不等式f(x)+f(x-2)<3.
- 已知f(x)的定义域(0,+无穷),且在其上为增函数,满足f(xy)=f(x)+f(y),f(2)=1,试解不等式f(x)+f(x-2)小于3
- 关于二次函数的数学题
- 甲乙丙三人共买了8个面包,平均分着吃,甲付5个面包钱,乙付3个面包钱丙没钱,丙该付4元,甲应收回多少钱
- 如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_度.
猜你喜欢