设函数f(x)是周期为2012的连续函数.证明:存在ξ∈[0,2011]使得f(ξ)=f(ξ+1).
人气:253 ℃ 时间:2020-01-27 08:19:25
解答
记F(x)=f(x)-f(x+1),
由f(x)的性质知,F(x)是周期为2012的连续函数.
因为
F(0)+F(1)+…+F(2011)
=f(0)-f(1)+f(1)-f(2)+…+f(2011)-f(2012)
=f(0)-f(2012)=0,
∃i∈{0,1,…,2011}使得F(i)=0,则取ξ=i即可;
否则,必然存在i,j∈{0,1,…,2011},使得F(i)•F(j)<0,
从而根据连续函数的零点存在定理可得,
存在ξ∈[0,2011],使得F(ξ)=0,
即:f(ξ)=f(ξ+1).
推荐
- 设函数f(x)是周期为2012的连续函数.证明:存在ξ∈[0,2011]使得f(ξ)=f(ξ+1).
- 设函数f(x)是周期为2012的连续函数.证明:存在ξ∈[0,2011]使得f(ξ)=f(ξ+1).
- 设函数f(x)在[0,1]上连续,且f(0)=f(1),证明:一定存在x属于【0,1/2】,使得f(x)=f(x+1/2)
- 若对任意的x∈R,函数f(x)满足f(x+2012)=-f(x+2011),且f(2012)=-2012,则f(-1)=( ) A.1 B.-1 C.2012 D.-2012
- 设函数f(x)=(x-2011)(x-2012)+1/2013,则f(x)=0,为什么两个解都在(2011,2012)内.
- 1/s=1/1980+1/1981+…+1/2001 求s的整数部分
- 一个长方形苗圃东西长2000米,南北80米,这个苗圃的面积有多少公顷?
- my parents like me very much否定经验和一般疑问句和画线部分提问
猜你喜欢