希望 能解答我的疑惑,其实很简单的.
对于这个问题
f(x)=a^2·lnx-x^2+ax(a>0) ①求f(x)的单调区间 ②求所有实数a,使e-1≤f(x)≤e^2对x∈[1,e]恒成立.
①
∵f(x)=a²lnx-x²+ax,其中x>0
∴f'(x)=(a²/x)-2x+a=-(x-a)(2x+a)/x
∵a>0
∴f(x)的单调增区间为(0,a),f(x)的单调减区间为(a,+∞)
②
由题意得:
f(1)=a-1≥e-1
即a≥e
由①知:f(x)在[1,e]内单调递增
要使e-1≤f(x)≤e²对x∈[1,e]恒成立
只要:
f(1)=a-1≥e-1
f(e)=a²-e²+ae≤e²
解得:a=e
在解析中 为什么
由题意得:
f(1)=a-1≥e-1
这是 怎样由题意 得出来的呢?
希望 能解答我的疑惑,
人气:352 ℃ 时间:2020-04-15 15:14:30
解答
你把x = 1代入F(X)= A ^ 2·LNX-x ^ 2 + AX?(A> 0)的
LN1 = 0
这样计算的F(1) = A-1(1)= A-1≥根据这个E-1 E-1≤F(X)
推荐
- 过点(-1,0)作抛物线y=x2+x+1的切线,则其中一条切线为( ) A.2x+y+2=0 B.3x-y+3=0 C.x+y+1=0 D.x-y+1=0
- 设f(x)和g(x)在负无穷到正无穷上有定义,且满足下列条件:(1)f(x+h)=f(x)g(h)+f(h)g(x)
- y=f(x)在R上可倒,且满足xf(x)>-f(x)恒成立,已知a>b,以下哪个选项正确
- f(x)=[x+根号(1+x2)]10,求f'(1)/f(1)
- 若直线y=x是曲线y=x3-3x2+ax的切线,则a=_.
- 英语翻译
- 在三角形ABC中,角A,B,C所对的边分别为a,b,c,tanA等于四分之一,tanB等于五分之三.求角C的大小.若c等于耕号十七,求a边长.
- 世界上有食人鱼吗?
猜你喜欢