设f(x)和g(x)在负无穷到正无穷上有定义,且满足下列条件:(1)f(x+h)=f(x)g(h)+f(h)g(x)
(2)f(x)和g(x)在x=0处可导,且f(0)=g'(0)=0,g(0)=f'(0)=1,求f'(x)
请大侠们帮助小弟,
人气:363 ℃ 时间:2020-02-04 21:18:17
解答
一楼楼主回答的很精彩啊,可惜是.,哈哈.
这道题主要是考查导数的定义的应用!
正确答案是g(x)
正确答案如下:
f'(x)= lim [f(x+h)-f(x)]/[(x+h)-x]
h->0
= lim[f(x+h)-f(x)]/h
h->0
由于f(x+h)=f(x)g(h)+f(h)g(x)
所以上式还可以化为:
f'(x)= lim〔f(x)g(h)+f(h)g(x)-f(x)]/h
h->0
= limf(x)*[g(h)-1]/h+ limf(h)g(x)/h
h->0h->0
=limf(x)*[g(h)-g(0)]/h +limg(x)*[f(h)-f(0)]/h
h->0h->0
=f(x)*g'(0)+g(x)*f'(0)
=g(x)
推荐
- y=f(x)在R上可倒,且满足xf(x)>-f(x)恒成立,已知a>b,以下哪个选项正确
- 一道高三数学题(有关导数)
- 过点(-1,0)作抛物线y=x2+x+1的切线,则其中一条切线为( ) A.2x+y+2=0 B.3x-y+3=0 C.x+y+1=0 D.x-y+1=0
- f(x)=[x+根号(1+x2)]10,求f'(1)/f(1)
- 已知函数f(x)=(x^2+ax-2a^2+3a)e^x(x是有理数,e为自然对数)当a=0时,求曲线f(x)在点(1,f(1))切线斜率
- 舜年二十以孝闻,年三十尧举之,年五十摄行天子事,年五十八尧崩,年六十一代尧贱帝位
- 减少酸雨产生的措施:1、对燃烧煤时的尾气进行除硫处理2、少用原煤作燃料3、燃煤
- 用代数表示:比a b两数的和的3倍小c的数.a与b的3倍的和除以c所得的商.a的2倍的平方
猜你喜欢