> 数学 >
在锐角三角形ABC中,角A,B,C所对的边分别是a,b,c,且acosC+1/2c=b.
当a=1时,求b^2+c^2的取值范围
人气:429 ℃ 时间:2019-10-14 03:08:41
解答
acosC+1/2*c=b
那么2abcosC+bc=2b^2
而2abcosC=a^2+b^2-c^2
所以a^2+b^2-c^2+bc=2b^2
又a=1,所以b^2+c^2=1+bc>1
而bc≤(b^2+c^2)/2,所以b^2+c^2≤1+(b^2+c^2)/2
所以b^2+c^2≤2,那么1
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版