设F是椭圆(x^2)/32+(y^2)/24=1的右焦点,定点A(3,2),点P在椭圆上,则|PA|+2|PF|的最小值是.
人气:148 ℃ 时间:2019-12-12 11:45:14
解答
a²=32,b²=24
c²=8
e=c/a=1/2
椭圆第二定义
PF:P到右准线x=a²/c=8√2的距离=e=1/2
所以2PF=P到右准线距离
所以做AB垂直右准线,当P是AB和椭圆交点时
PA+P到右准线距离最小=8√2-3
所以最小值=8√2-3
推荐
- 点P在椭圆(x^2)/25+(y^2)/16=1上,点A(2,)1,F为左焦点,求PA+PF的最小值和最大值
- 点P在椭圆(x^2)/25+(y^2)/16=1上,点A(1,3),F为右焦点,求PA+PF的最小值
- f是椭圆x^2/4+y^2/3=1的右焦点,A(1,1)是椭圆内的一个定点,P为椭圆上的一个动点,求PA+PF的最小值
- 已知点A(1,1),而且F是椭圆x^2/9+y^2/5=1的左焦点,P是椭圆上任意一点,求绝对值PF+PA的最大值和最小值
- 已知椭圆x^2/25+y^2/16=1内有一点A(2,1),F为椭圆的左焦点求|PA|+|PF|的最大值和最最小值
- 化学反应后所得物质的质量白色沉淀的质量是多少克?
- 冬冬买了每支0.5元的铅笔,每支0.8元的两种铅笔共20支,付14元,找回0.4元,两种铅笔各花几元?
- 抛物线为二次函数y=x2-2x-3的图像,它与x轴相交于A、B两点(点A在点B的左侧),与y轴相交于点C,顶点为p
猜你喜欢