> 数学 >
已知x=3是函数f(x)=1/3x^3-ax^2 +3x的一个极值点.求a?求函数的单调区间和极值?拜托各位大神
急!
人气:474 ℃ 时间:2020-04-28 17:35:31
解答
f'(x)=x^2-2ax+3 f'(3)=9-6a+3=0 a=2 f(x)=1/3x^3-2x^2+3x f'(x)=x^2-4x+3 令f'(x)=0 得x=1,x=3 ∴f(x)在(-∞,1)上增,在(1,3)上减,在(3,+∞)上增 极值:f(1)=1/3-2+3=4/3 f(3)=9-18+9=0
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版