当x∈(1,2)时,2-x∈(0,1),∴f(x)=-f(2-x)=-log2(2-x).
又f(x)为偶函数,即f(x)=f(-x),于是f(-x)=-f(-x+2),即f(x)=-f(x+2)=f(x+4),故 f(x)是以4为周期的函数.
∵f(1)=0,∴当8<x≤9时,0<x-8≤1,f(x)=f(x-8)=log2(x-8).
由log2(x-8)+1=0,得x=
17 |
2 |
当9<x<10时,1<x-8<2,f(x)=f(x-8)=-log2[2-(x-8)]=-log2(10-x),
-log2(10-x)+1=0,得10-x=2,x=8<9(舍).
综上x=
17 |
2 |
故选C.