> 数学 >
设A,B均为n阶可逆矩阵,求证:(AB)^*=B*A*
人气:282 ℃ 时间:2020-03-20 11:24:14
解答
证明:因为A,B可逆,故 A^-1,B^-1 存在,AB 可逆,
且有 A* = |A|A^-1,B* = |B|B^-1.
故 (AB)* = |AB|(AB)^-1
= |A||B|B^-1A^-1
= (|B|B^-1)(|A|A^-1)
= B*A*.
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版