> 数学 >
y'=cos(x-y)-cos(x+y)的通解,求详解.
人气:149 ℃ 时间:2020-10-02 07:33:01
解答
∵y'=cos(x-y)-cos(x+y)
==>y'=(cosxcosy+sinxsiny)-(cosxcosy-sinxsiny)(应用余弦和差角公式)
==>y'=2sinxsiny
==>dy/siny=sinxdx
==>∫[1/(cosy-1)-1/(cosy+1)]d(cosy)=2∫sinxdx
==>ln│(cosy-1)/(cosy+1)│=-2cosx+ln│C│(C是积分常数)
==>(cosy-1)/(cosy+1)=Ce^(-2cosx)
==>cosy=[1+Ce^(-2cosx)]/[1-Ce^(-2cosx)]
∴原方程的通解是cosy=[1+Ce^(-2cosx)]/[1-Ce^(-2cosx)](C是积分常数).
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版