设A为n阶非零实方阵,A*是A的伴随矩阵,AT是A的转置矩阵,当A*=AT时,证明|A|≠0 后面的一部分解答没看懂
证明:由已知A*=A^T
所以有 AA^T = AA* = |A|E.
再由A为n阶非零实方阵,可设aij≠0.
考虑 AA^T = |A|E 第i行第i列的元素,得
|A| = ai1^2+...+aij^2+...+ain^2 > 0
(因为 ai1,...,aij,...,ain 都是实数,且aij≠0)
所以 |A|≠0.
考虑 AA^T = |A|E 第i行第i列的元素,得|A| = ai1^2+...+aij^2+...+ain^2 > 0,这是怎么过来的?
人气:209 ℃ 时间:2019-11-25 22:17:30
解答
|A|E=AA^T,那么|A|E的第i行第i列的元素就是A的第i行元素与A^T的第i列的元素逐个相乘之和,
【逐个相乘就是A的第i行第1列的元素与A^T的第i列第1行的元素相乘,A的第i行第2列的元素与A^T的第i列第2行的元素相乘,...,A的第i行第j列的元素与A^T的第i列第j行的元素相乘,...,A的第i行第n列的元素与A^T的第i列第n行的元素相乘,
而A^T的第i列第j行的元素就是A的第i行第j列的元素,
然后求和就是AA^T的第i行第i列元素,也就是|A|E第i行第i列的元素】
也就是|A|E中第i行第i列的|A|=ai1^2+...+aij^2+...+ain^2
由于已经设aij≠0,所以|A|>0
推荐
- 设A为n阶非零方阵,A*是A的伴随矩阵,A′是A的转置矩阵,当A*=A′时,证明|A|≠0.
- 设A 为n阶非零实矩阵, A*=AT,证明A可逆.
- 设N阶实方阵A不等于O,且A的伴随阵等于A的转置矩阵,证明A可逆.
- 设A是N阶非零实方阵且满足A的伴随矩阵与A的转置矩阵相等,证明det(A)不等于零.
- 已知n阶非零方阵A是奇异矩阵,证明A的转置伴随矩阵的行列式等于零
- 形容依赖别人的人的成语?
- 在1,2,3…90这90个自然数中,取两个不同的数,使得它们的和是8的倍数,共有多少种不同取法?
- 椭圆x^2+my^2=4长轴上左顶点为A,以A为直角顶点作一个内接于椭圆的等腰直角三角形,该三角形的面积是16/25,
猜你喜欢