P是三角形ABC所在平面外一点,PA,PB,PC两两垂直,PH垂直于平面ABC,H是垂足.】
1.求证三角形ABC为锐角三角形 2.当PB=PC=b时,求P到平面ABC的距离.
人气:475 ℃ 时间:2019-10-08 16:44:02
解答
(1)由余弦定理:c^2=a^2+b^2-2abCosC可得CosC=(a^2+b^2-c^2)/2ab即得到:Cos∠ABC=(AB^2+BC^2-AC^2)/2AB·BC又由 AB^2+BC^2-AC^2=PA^2+PB^2+PB^2+PC^2-PA^2-PC^2=PB^2>0故 Cos∠ABC>0 所以∠ABC...
推荐
- P是三角形ABC所在平面外一点,PA,PB,PC两两垂直,PH垂直于平面ABC,H是垂足.】
- 已知P是△ABC所在平面外一点,PA、PB、PC两两垂直,H是△ABC的垂心,求证:PH⊥平面ABC.
- 已知三条相交于一点的线段PA,PB,PC两两垂直,且A,B,C在同一平面内,P在平面ABC外,PH⊥平面ABC于H,则垂足H是△ABC的( ) A.内心 B.外心 C.重心 D.垂心
- 已知P是△ABC所在平面外一点,PA、PB、PC两两垂直,H是△ABC的垂心,求证:PH⊥平面ABC.
- P为三角形ABC所在平面外一点,PA⊥ PB,PB ⊥PC,PC ⊥PA,PH ⊥平面ABC于H.
- 模仿下面的句子造句
- in the opinion of后是mine还是me
- (t+3t的平方-3)-(-t+4r的平方),其中t=-1 怎么求
猜你喜欢