a1=2,a2=4,数列bn=a(n+1)-an,b(n+1)=2bn+2,求证,数列{bn+2}是等比数列,求an的通项公式
人气:484 ℃ 时间:2020-01-28 05:54:25
解答
⑴因为b(n+1)=2bn+2
b(n+1)+2=2(bn+2)
[b(n+1)+2]/(bn+2)=2
b1=a2-a1=4-2=2
所以{bn+2}为首相为2公比为2的等比数列
{bn+2}=2^n
bn=(2^n) -2
b1=a2-a1
b2=a3-a2
b3=a4-a3
……
b(n-1)=an-a(n-1)
累加得,Sn=b1+b2+b3+……+bn=an-a1=2^1-2+2^2-2+2^3-2+……+2^(n-1)-2
=2^1+2^2+2^3+……+2^(n-1)-2n
=[2*(1-2^(n-1))]/(1-2) -2n
=2^n-4-2n
所以an-a1=2^n-2n-4
an=2^n-2n-2
后面的具体在自己算一下吧 我怕我算错了
推荐
- 已知数列{an}满足a1=1,a2=2,an+2=an+an+12,n∈N*. (1)令bn=an+1-an,证明:{bn}是等比数列; (2)求{an}的通项公式.
- 数列an中,a1=3,an=(3an-1-2)/an-1,数列bn满足bn=an-2/1-an,证明bn是等比数列 2.求数列an通项公式和最大项
- 数列{an} {bn}满足:a1=0 a2=1 a(n+2)=[an+a(n+1)]/2 bn=a(n+1)-an 求证 bn是等比数列和 bn的通向公式
- 数列an中,a1=2,an+1=3an-2,bn=an-1,求证bn为等比数列,求an通项公式(n+1为下标)
- a1=1,2an+1=(1+1/n)^2*an 证明{an/n^2}为等比数列 求{an}通项公式 令bn=(an+1),求数列{bn}的前n项和Sn
- 根据数列极限定义证明:lim(1/n^2)=0 n趋近于无穷大.
- I was doing mu homework____the telephone rang,It was my aunt
- 陶瓷品厂去年生产某种瓷杯120万箱,每箱售价400元,按8%的税率缴纳产品税,该厂去年生产这种瓷杯的税后收入是多少万元?
猜你喜欢