计算∫(0,1)dx∫(x,1)e^(y^2)dy=
答案是1/2(1-1/e),求详细解答
人气:442 ℃ 时间:2020-05-25 12:43:20
解答
题目应该是e^(-y^2)
交换积分次序:
= ∫(0,1)dy ∫(0,y) e^(-y^2) dx
= ∫(0,1) ye^(-y^2)dy
= 1/2 * ∫(0,1) e^(-y^2)dy^2
= 1/2 * (1-1/e)
推荐
猜你喜欢
- 用mathematica求解如下二阶微分方程的数值解 输出最终的数值解并画图
- 如果幂函数f(x)=xa的图象经过点(2,22),则f(4)=_.
- 计算(5分之2x的立方-7x的平方+3分之2x)除以3分之2的结果是()
- 用u,e,r,t,t,b,l,f,y,组成一个单词
- 关于x的方程1/x-3+k/x+3=3+k/x²-9,则k的取值范围是k>0或k<-1,且k≠3 .
- 帮我化简两个三角函数式子,..
- 两个数之和为445,大数除以小数等于4,余数为45,请问这两个数是多少?
- 形容五官美的语句