若函数f(x)=x3+ax-2在区间(1,+∞)内是增函数,则实数a的取值范围是( )
A. [-3,+∞)
B. (-3,+∞)
C. [0,+∞)
D. (0,+∞)
人气:325 ℃ 时间:2019-08-19 05:15:26
解答
f′(x)=3x2+a,根据函数导数与函数的单调性之间的关系,f′(x)≥0在[1,+∞)上恒成立,即a≥-3x2,恒成立,只需a大于-3x2 的最大值即可,而-3x2 在[1,+∞)上的最大值为-3,所以a≥-3.即数a的取值范围是[-3,+∞).
故选A.
推荐
猜你喜欢
- 一个小数位数的小数点向左移动一位后,与原,的数的和是7.15,那么它们的积是多少?
- 63.编码20种氨基酸的DNA核苷酸三联体有多少种?
- 如图,四边形ABCD中,AB=BC=CD,∠ABC=90°,∠BCD=150°,求∠BAD的度数.
- 发电机接线图
- 测电阻值的实验步骤,
- 已知x,y,a,b都是正整数,且a
- 下列现象中,动能和势能是如何转化的?
- 半径为1的球面上的四点 是正四面体的顶点,则A与B两点间的球面距离为