>
数学
>
设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵
人气:279 ℃ 时间:2019-11-06 05:14:18
解答
正交矩阵定义:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”.)或A′A=E,则n阶实矩阵A称为正交矩阵
对称矩阵A'=A
所以A方=E,命题成立
推荐
证明“若A为n阶正交阵,则其伴随矩阵A*也一定是正交矩阵.”
设A为n阶实对称矩阵,若A的平方=0,证明A=0
证明:设A为n阶矩阵,A的平方等于A ,证明A一定能相似对角化.
线性代数问题:设A是n阶反对称矩阵,证明(E-A)(E+A)^(-1)是正交矩阵.
设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0
求一篇80次左右的英语文章 描写一位较为熟知的伟人
how much is the coat?___ ___ ___ ____ of the coat?
一个多项式A加上3x2-5x+2得到2x2-4x+3,求这个多项式A.
猜你喜欢
中国近代史上的人物传记
函数f(x)=sinx+cosx在x∈【-π/2,π/2】时,函数的最大、最小值分别为
10克除0.6等于?
在发展农业过程中,印度重视水利工程建设与印度自然环境有什么关系
The movie is very interesting ____ most people.A.for.B.on.C.at.D.in 说理由,
48除以一个数,商是6余1,这个数是多少?
?Because I have no classes .怎样写?急!
That is an eraser.变否定句、 一般疑问句
© 2025 79432.Com All Rights Reserved.
电脑版
|
手机版