设A为n阶实对称矩阵,若A的平方=0,证明A=0
人气:318 ℃ 时间:2020-04-11 03:35:59
解答
实对称阵于是A=A‘(A的转置),那么A²=AA’=0
设A=(aij),那么AA‘=(∑(aij)²),于是
(∑(aij)²=0,aij=0,对1≤i,j≤n,这就证明了A=0
推荐
- 设矩阵A是n×n阶实对称矩阵,且A的平方等于0,证明A=0
- 如果A是实对称矩阵,且A^2=0,证明:A=0
- 设A为n阶实对称矩阵,若A的平方等于E,证明A是正交矩阵
- 设A是n阶实对称矩阵,A^2=A,证明存在正交矩阵.
- 设A,B均为n阶对称矩阵,证明:AB+BA也为n阶对称矩阵.
- 文言文 国朝尚书刘南.的全文是什么?
- 用内径为9厘米、内高为30厘米的圆柱形玻璃瓶(以装满水)向一个内底面积为13*13平方厘米,内高为8厘米的长
- 英语作文和听力水平怎么提高
猜你喜欢