> 数学 >
已知函数f(x)=3cos2x+2cosxsinx+sin2x,求f(x)的最大值和单调增区间
人气:124 ℃ 时间:2019-08-19 08:08:51
解答
f(x)= 3cos2x + 2cosxsinx + sin2x
= 3cos2x + sin2x + sin2x
= 3cos2x + 2sin2x
= √13 sin【2x + arc tan(2/3)】
最大值为 根号13
增区间:2kπ - π/2 ≤ 2x + arc tan(2/3) ≤ 2kπ + π/2
kπ - π/4 - (1/2)arc tan(2/3)≤ x ≤ kπ + π/4 +(1/2)arc tan(2/3)
减区间:2kπ + π/2 ≤ 2x + arc tan(2/3) ≤ 2kπ + 3π/2
kπ + π/4 - (1/2)arc tan(2/3)≤ x ≤ kπ + 3π/4 +(1/2)arc tan(2/3)是sin平方x,,3cos平方x,,不好意思打得不完整,,你能更正一下吗f(x)= 3cos²x + 2cosxsinx + sin²x = 2cos²x + 2cosxsinx + cos²x + sin²x = 2cos²x + sin2x + 1 = 2cos²x - 1 + sin2x + 1 + 1 = cos2x + sin2x + 2 = √2 sin(2x + π/4)+ 2最大值:√2 + 2增区间:2kπ - π/2 ≤ 2x + π/4 ≤ 2kπ + π/2kπ- 3π/8 ≤ x ≤ kπ + π/8减区间:2kπ + π/2 ≤ 2x + π/4 ≤ 2kπ + 3π/2kπ + π/8 ≤ x ≤ kπ + 5π/8
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版