设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2
人气:237 ℃ 时间:2020-03-25 02:46:27
解答
将 a1,a2...am 扩充为V的标准正交基 a1,a2...am,...,an任一向量a可表示为 a=k1a1+k2a2+...+kmam+...+knan(a,ai) = ki||a||^2 = (a,a)= (a,k1a1+k2a2+...+kmam+...+knan)= ∑(a,kiai)= ∑ki(a,ai)= ∑(a,ai)^2>= ∑(a...
推荐
- 设有n维向量组a1 a2····am ,证明:如果m>n,则a1 a2····am 线性相关.
- a1,a2,…an是一组n维向量,证明:它们线性无关的充分必要条件是任一n维向量组都可以由它们线性表示.
- 设a1,a2,…,an是一组线性无关的n维向量,证明:任一n维向量都可由它们线性表示.
- 设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
- 设n维向量a1 a2线性无关a3 a4线性无关若a1 a2都分别与a3 a4正交 证明a1 a2,a3,a4线性无关
- 如果两个实数的积是有理数,那么这两个数都是有理数”的否命题
- 英语翻译请教~在线等~
- 格列佛游记中格列佛第一次出游发现小人国是用什么方式来选拔官员的后来格列佛游记因为什么事不得不离开小人国
猜你喜欢