设a1,a2...am是n维欧式空间V的一个标准正交向量组,证明:对V中任意向量a有 ∑(a,ai)^2
人气:446 ℃ 时间:2020-03-25 02:46:27
解答
将 a1,a2...am 扩充为V的标准正交基 a1,a2...am,...,an任一向量a可表示为 a=k1a1+k2a2+...+kmam+...+knan(a,ai) = ki||a||^2 = (a,a)= (a,k1a1+k2a2+...+kmam+...+knan)= ∑(a,kiai)= ∑ki(a,ai)= ∑(a,ai)^2>= ∑(a...
推荐
- 设有n维向量组a1 a2····am ,证明:如果m>n,则a1 a2····am 线性相关.
- a1,a2,…an是一组n维向量,证明:它们线性无关的充分必要条件是任一n维向量组都可以由它们线性表示.
- 设a1,a2,…,an是一组线性无关的n维向量,证明:任一n维向量都可由它们线性表示.
- 设a1,a2为n维列向量,A为n阶正交矩阵,证明[Aa1,Aa2]=[a1,a2]
- 设n维向量a1 a2线性无关a3 a4线性无关若a1 a2都分别与a3 a4正交 证明a1 a2,a3,a4线性无关
- 一名便衣刑警坐上了公共汽车,忽然发现一个小偷向相反的方向步行,10秒钟后他下车去追小偷,己知刑警的速度比小偷快一倍,比汽车的速度慢4/5.那么,这名刑警追上小偷需要_秒.
- 英语翻译
- Look!There are thounds of stars in the sky.为什么star可以加S?
猜你喜欢