已知log2 3=a,3^b=7,求log12 56.
人气:197 ℃ 时间:2020-03-23 04:57:20
解答
因为log2^3=a,3^b=7,所以:
log2^(3^b)=log2^7
即blog2^3=log2^7
log2^7=ab
则log12^56
=(log2^56)/(log2^12)
=(log2^8 +log2^7)/(log2^4 +log2^3)
=(3+ab)/(2+a)
推荐
- 已知log2 3=a,log3 7=b,试用a,b表示log12 56
- log2^3=a,3^b=7,a、b表示log12^56
- 已知log2(底数)3=a,3^b=7,用a.b表示log12(底数)56
- 已知log2'3=a,2的b次方=7,用a,b表示log12'56
- 已知log2(3)=a,log3(7)=b,试用a,b表示log14(56)
- 有一个长25厘米,宽2分米,高22厘米的玻璃缸中,水深19厘米.小明将一块棱长1厘米的长方体铁块投入水中,
- I can't help saying sorry to you ,becsuse I can't help(finish;to finish)the work.选哪个?
- 一道换算单位的数学题
猜你喜欢