三角形ABC中,O是外心,BD为外接圆直径,H为重心.求证:向量OH=OA+OB+OC
人气:356 ℃ 时间:2019-09-29 03:45:29
解答
先将向量OB和向量OC相加,得到向量OD(向量OD过BC中点)然后证向量OD+向量OA=向量OH即证AHOD为平行四边形首先OD‖AH(都垂直BC)现在只要证AH=OD=2OE(E为OD和BC交点,即平行四边形OCDB的对角线交点)就成立了延长CO交...
推荐
- 三角形ABC内一点O,向量OA·OB=OB·OC=OC·OA,则点O是三角形的重心,外心,内心,还是垂心?
- 三角形ABC的外心为O,重心为H,求证,向量OH=OA+OB+OC
- 已知三角形ABC中,O是三角形ABC内一点,向量OA+OB+OC=0,判断o是三角形ABC的重心还是外心,说明理由
- o是△abc的外心,重心是G(1)设向量OH=oa+ob+oc求证H为垂心
- 设O是三角形ABC的外心,点M满足向量OA+向量OB+向量OC=向量OM,则M是三角形ABC的()?A内心,B重心,C垂心
- 青草晒干后,要失去原重量的80%.现在有青草4800千克,晒干后是多少千克
- 英语翻译
- 一篇500字的文章 成长的喜悦
猜你喜欢