如图,圆O是三角形ABC的外接圆,AB是圆O的直径,D是AB延长线上的一点AE⊥DC交DC的延长线于点E,
且AC平分∠EAB,(1)求证:DE是圆O的切线,(2)若AB=6,AE=4,求BC和BD的长
人气:225 ℃ 时间:2019-12-16 21:42:14
解答
1)证明:
∵AB是圆O的直径
∴∠ACB=90°,圆心O是AB的中点
∴∠ECA+∠DCB=90°
连接OC
∵AE⊥DC,AC平分∠EAB
∴∠ECA=90°-∠EAC= 90°- ∠BAC=∠OBC
∵∠OBC=∠OCB
∴∠ECA=∠OCB
∴∠OCB+∠DCB=90°
即OC⊥DE
∴DE是圆O的切线
由上述结论可知
Rt△AED∽Rt△OCD
∴AE/OC=AD/OD
即4/3=(6+BD)/(3+BD)
解得BD=6
∵Rt△AEC∽Rt△ACB
∴AE/AC=AC/AB
即4/AC=AC/6
解得AC=2√6
∴BC^2=AB^2-AC^2=6^2-(2√6)^2=12
∴BC=2√3
推荐
- 已知,如图,△ABC是等边三角形,过AC边上的点D作DG∥BC,交AB于点G,在GD的延长线上取点E,使DE=DC,连接AE、BD. (1)求证:△AGE≌△DAB; (2)过点E作EF∥DB,交BC于点F,连接AF,求∠AFE的
- 如图,E是三角形ABCC的内心,AE的延长线交三角形三角形ABC的外接圆与D,求证 DE=DB=DC
- 已知:如图,在三角形ABC中,AB=AC,AD,AE分别平分∠BAC和∠CAF,AE=DC求证:四边形ADCE是矩形
- 如图,在三角形ABC中,角C=90度,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC,试判断DE与AB的位置关系,并说
- 如图,在三角形abc中,ab等于cb,角abc等于90度,d为ab延长线上一点,点e在bc边上,且be等于bd,连接ae.de.dc.
- 黄铜矿的组要成分怎么读
- You can look up the word in the dictionary.
- 一碗米几碗水
猜你喜欢