> 数学 >
设向量e1,向量e2是平面内的一组基底,证明:当λ1倍向量e1+λ2倍向量e2=0时恒有λ1=λ2=0
人气:154 ℃ 时间:2019-11-24 18:00:31
解答
首先,由题知
向量e1,向量e2是平面内的一组基底
故e1 e2不共线
反证法:假设λ1不等于λ2不等于0
由题干得:e1=-(λ2/λ1)*e2
则e1 e2共线
与题干矛盾
所以λ1=λ2=0
推荐
猜你喜欢
© 2025 79432.Com All Rights Reserved.
电脑版|手机版