已知函数f(x)=log a (mx-1)/(1-x) (a>0,a≠1,m≠1)是奇函数.
(1)求实数m的值;
(2)当a>1时,判断函数f(x)在(1,+无穷)上的单调性,并给出证明.
人气:220 ℃ 时间:2020-06-20 05:15:57
解答
(1)f(-x)=loga#[(-mx-1)/(1+x)]=-f(x)=loga#[(1-x)/(mx-1)]=loga#[(x-1)/(1-mx)],故m=-1
(2)f(x)=loga#[(x+1)/(x-1)],(x+1)/(x-1)>0,即x>1或x<-1.在x>1时为减函数,证明如下:
当a>1时,设1=loga#[(x2+1)(x1-1)/(x1+1)(x2-1)],因[(x2+1)(x1-1)/(x1+1)(x2-1)]-1=2(x1-x2)/(x1+1)(x2-1)<0
即(x2+1)(x1-1)/(x1+1)(x2-1)<1,故f(x2)-f(x1)1时f(x)是减函数.
推荐
- 已知f(x)=log^2((1-mx)/(1+x))是奇函数.求m的值
- f(x)=log以a为底的(1-mx)/(x-1)(a>0,a≠1,m≠1)是奇函数.求m
- 已知函数f(x)=log a((1+mx)/(x-1) (a>0,a≠1,m≠-1)为奇函数
- 已知函数f(x)=log(1-mx)/(x-1)在定义域上为奇函数,求m与其定义域
- 已知函数f(x)=loga1-mx/x-1是奇函数(a大于0,且a≠1).
- 氨基酸,二肽,蛋白质均既能跟强酸反应又能跟强碱反应?
- 若双曲线x²/a²-y²/b²=1(a>0,b>0)的渐近线方程为y=±3/2x,则其离心率为
- 水滴石穿造句.
猜你喜欢