已知函数f(x)=Inx,g(x)=a/x(a>0)设F(x)=f(x)+g(x).
(1)求函数F(x)的单调区间 (2)若以函数y=F(x)(x属于(0,3】)图像上任意一点P(x0.y0)为切点的切线的斜率k≤1/2恒成立,求实数a的最小值.
人气:455 ℃ 时间:2019-08-17 11:54:11
解答
(1)F(x)=f(x)+g(x),[x>0,a>0],F(x)的导数为1/x-a/x^2=(x-a)/x^2
令F(x)的导数>0得x>a,F(x)的导数=1/2
推荐
- ……高手进……已知函数f(x)=x+a^2/x,g(x)=x+Inx,其中a>0:(1)若x=1若x=1是函数h(x)=f(x)+g(x)的极值点,
- 已知函数f(x)=Inx.g(x)=a/x,设F(x)=f(x)+g(x).当a=1时,求函数F(x)的单调区间
- 已知函数f(x)=lnx-a/x. (1)当a>0时,判断f(x)在定义域上的单调性; (2)若f(x)在[1,e]上的最小值为3/2,求a的值.
- 已知函数f(x)=Inx,g(x)=a/x(a>0),设F(x)=f(x)+g(x)
- 设函数f(x)=x-2/x+a(2-Inx),(a>o),讨论f(x)的单调性
- 一个电热器正常工作时:电阻为1050欧姆,
- 有一个重10N,体积为1.2立方分米的铝球,把它轻轻放入水中,求水对它的浮力. 详解!
- 不清楚也不懂!(29 16:35:53)
猜你喜欢
- 同学们去春游,把42瓶矿泉水和30瓶可乐平均分给几个小组,正好分完,最多可以分给几个小组?每个小组分得两种饮料各多少瓶?
- 已知x/3=y/1=z/2 ,其中 xy+yz+xz=99,
- 一个长方形长与宽的比是14:5,如果长减少13厘米,宽增加13厘米,则面积增加182平方厘米,那么原长方形面积是多少平方厘米?
- 我出生在东南亚的星岛,从小和外祖父生活在一起.外祖父年轻时读了不少经、史、诗、词,又能书善画,在星岛文坛颇负盛名.我很小的时候,外祖父常常抱着我,坐在梨花木大交椅上,一遍又一遍地教我读唐诗宋词.每当读到“独在异乡为异客,每逢佳节倍思亲”“春
- 给你量筒、水、正方体小木块、植物油,如何测量植物油的密度?写出必要步骤并写出表达式
- 已知p(A)=0.4 p(B)=0.3,p(AUB)=0.6,求p(AB拔)
- 高一化学计算题“实验室用10gNaOH固体配制成1moi/LNaOH溶液,求所配制溶液的体积是多少”
- 化学元素Ba和Fe那个活泼