已知:已知双曲线x^2/a^2-y^2/b^2=1的一个焦点与抛物线y^2=4x的焦点重合,且双曲线的离心率等于√5.
:若有两个半径相同的圆C1,C2,他们的圆心都在x轴上方且分别在双曲线C的两条渐近线上,过双曲线的右焦点且且斜率为-1的直线l与圆C1,C2都相切,求两圆C1,C2圆心连线的斜率的范围.
人气:203 ℃ 时间:2019-09-24 04:42:03
解答
∵y^2=4x的焦点F(1,0)
∴双曲线x^2/a^2-y^2/b^2=1中
c=1,
又c/a=√5,
∴a=√5/√5,b^2=c^2-a^2=4/5
∴双曲线方程为5x^2-5y^2/4=1
双曲线渐近线方程为:y=±2x
设C1:(x-t)^2+(y-2t)^2=r^2
C2:(x+s)^2+(y-2s)^2=r^2
其中t,s,r>0
直线l:x+y-1=0
∵直线l与圆C1,C2都相切
∴|t+2t-1|/√2=r, |-s+2s-1|/√2=r
|3t-1| =√2r, |s-1|=√2r
3t-1=s-1或3t-1=1-s
s=3t 或 s=2-3t (0 C1,C2连线的斜率
k=(2s-2t)/(-s-t)=-2(s-t)/(s+t)
若 s=3t==>k=-1
若 s=2-3t
k=(4t-2)/(1-t)=-4+2/(1-t)
02<2/(1-t)<6
-2<-4+2/(1-t)<2
两圆C1,C2圆心连线的斜率
的范围是(-2,2)
推荐
猜你喜欢
- 已知在三角形ABC中,A(3,2),B(-1,5),C点在直线3x-y+3=0上,若三角形ABC面积为10,求C点坐标
- 英语翻译
- 6小时3分等于几小时?
- make a contribution to+do还是ing
- 已知函数f(x)=1/2x^2+(a-3)x+lnx,若函数是定义域上的单调函数,求实数a的最小值;在函数f(x)的图象上是否存在两点A(x1,y1)B(x2,y2),线段 AB的中点的横坐标是x0,直线AB的斜率为K,有中=f'(x)成立
- This is the watch for which Tom is looking 怎么改病句
- 有障碍物时,从低处向高处看看不见,那么从高处向低处看时能看见吗
- 9.8除以14的脱式计算