平行四边形ABCD EF为AD.BC中点GH是对角线BD上两点BG=DH求证EGFH为平行四边形
人气:221 ℃ 时间:2019-08-20 22:05:25
解答
证明:在平行四边形ABCD中
∵AD‖BC且AD=BC
∴∠ADB=∠CBD
又∵E、F分别是AD、BC的中点
∴ED=BF
∵DH=BG
∴△EDH≌△FBG
∴EH=FG ∠EHD=∠FGB
∴∠EHG=∠FGH
∴EH‖FG
∴四边形EGFH为平行四边形
(一组对边平行且相等)
推荐
- 如图,平行四边形ABCD中,E,G,F,H分别是四条边上的点,且AE=CF,BG=DH.求证:EF与GH互相平分.
- 已知:如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,G、H是对角线BD上的两点,且BG=DH
- 如图,在平行四边形ABCD中,E、G、F、H分别是四条边上的点,且AE=CF,BG=DH.求证:EF与GH互相平分
- 如图,在平行四边形ABCD中,E、F分别是BC、AD边的中点,G.H是对角线BD上的两点,BG=DH,求证:
- 如图所示,平行四边形ABCD中,E、F分别是AD、BC的中点,延长AB、CD,使BG=DH.求证:四边形EGFH是平行四边形.
- 南辕北撤是什么意思啊
- 第一题 (-5/12)的2007次方 * (2.4)的2006次方等于
- 普通的换算单位题:4升=( )毫升=( )立方分米
猜你喜欢