等差数列{an},{bn}的前n项和分别为Sn,Tn,若Sn/Tn=2n/3n+1,则a5/a7=
人气:195 ℃ 时间:2020-02-02 18:18:10
解答
应该是求a5/b7吧
根据等差数列前n项和的性质:设Sn=2kn²,Tn=kn(3n+1)
则a5/b7
=(S5-S4)/(T7-T6)
=(2k×5²-2k×4²)/(k×7×22-k×6×19)
=(18k)/(40k)
=9/20
答案:9/20
推荐
- 由正数组成的等差数列{an}和{bn}的前n项和分别为Sn和Tn,且SnTn=2n3n+1,则a5b7=( ) A.1320 B.914 C.2031 D.920
- 等差数列{an}、{bn}的前n项和分别为Sn、Tn,若Sn/Tn=2n/3n+1,求an/bn
- 等差数列{an},{bn}的前n项和分别为Sn,Tn,若SnTn=2n3n+1,则anbn=( ) A.23 B.2n−13n−1 C.2n+13n+1 D.2n−13n+4
- 等差数列{An},{Bn}的前n项和为Sn与Tn,若Sn/Tn=2n/3n+1,则A5/B7的值是
- 等差数列,{an},{bn}的前n项和分别是Sn,Tn.若Sn/Tn=2n/3n+1,求a5/b5的值
- 下面句中标点符号分析有误的一项是( )
- Can the girls over there dance?回答.
- in China ,all the students work hard at school ___ going to university for higher education....
猜你喜欢