求多项式x^n-1在复数域和实数域内的因式分解.
我不明白实数域上怎么分解的啊?看个答案将共轭虚根放在一起不明白怎么弄得那么多式子!
将上面的共轭虚根放在一起就得到实数域上的分解:
n是奇数时 x^n-1=(x-1)(x^2-2cos(t)x+1)(x^2-2cos(2t)x+1)...(x^2-2cos((n-1)t/2)x+1)
n是偶数时 x^n-1=(x-1)(x^2-2cos(t)x+1)(x^2-2cos(2t)x+1)...(x^2-2cos((n/2-1)t)x+1)(x+1)
人气:454 ℃ 时间:2019-08-18 15:33:03
解答
在复数域内,多项式x^n-1的因子分解可以看成是方程x^n-1=0的求解,即1开n次方根,假设求得解为X1.Xn,则 x^n-1=(x-x1)*(x-x2)*.*(x-xn)
1开n次方根,求得的解有共轭虚根的,比如z1=cos(θ)+sin(θ)i 和 z2=cos(θ)-sin(θ)i
z1+z2 = 2cos(θ) z1*z2=1
这两个根对应的多项式相乘,得
( x - z1 ) * (x - z2) = x^2 - (z1+z2)x + z1*z2
= x^2 - 2cos(θ) x + 1
当n是奇数是,有一个解为1,落在实数正轴,没有对应的共轭虚根;而当n是偶数时,则有两个解分别落在实际正负轴,没有对应的共轭虚根.因此需要区别对待.
推荐
猜你喜欢
- 有A、B两个容器,如图先把A装满水,然后倒入B中,B中水的深度是多少厘米?
- 一道高中微积分的计算
- 两中不同的植物细胞都是2倍体融合后是几倍体?为什么
- 2010年9月10日晚哪里发生地震?
- I brush my teeth twice a day
- 已知直角三角形的两直角边长分别为a,b,斜边长为c,且a,b,c均为正整数,其中a是素数,证明:2(a+b+1)=(a+1)²
- 假设2010年某商品总量为10万件,每件商品用货币表示为6元,2011年该商品的劳动生产率提高20%
- light ____(travel) 186,000 miles per second