> 数学 >
已知向量a=(8,2),b=(3,3),c=(6,12),p=(6,4),问是否存在实数x,y,z满足下列条件
(1)p=xa+yb+zc (2)x+y+z=1 如果存在,求出x,y,z的值,不存在则说明理由.
人气:378 ℃ 时间:2019-08-20 15:01:45
解答
(1)p=xa+yb+zc (6,4) = (8x+3y+6z,2x+3y+12z)=> 6 = 8x+3y+6z4 = 2x+3y+12zx=0,y= 8/3,z= -1/3 satisfy the above equations.存在实数x,y,z满足下列条件(2)x+y+z=1 8x+3y+6z = 6 (1)2x+3y+12z = 4 (2)x+y+z=1 (3)(1)...
推荐
猜你喜欢
© 2024 79432.Com All Rights Reserved.
电脑版|手机版